

Published on Web 03/27/2003

Synthesis and Stability of Reactive Salts of Dodecafluoro-*closo*-dodecaborate(2–)

Sergei V. Ivanov,[†] Susie M. Miller,[†] Oren P. Anderson,[†] Konstantin A. Solntsev,^{*,‡} and Steven H. Strauss^{*,†}

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, and Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117907, Russia

Received December 8, 2002; E-mail: strauss@lamar.colostate.edu

The B₁₂H₁₂²⁻ dianion, first prepared in 1960,¹ is the most easily synthesized, the most stable, the most symmetric, and the best studied of the *closo*-B_nH_n²⁻ species.² Before the 1990s, the persubstituted derivatives of B₁₂H₁₂²⁻ were limited to B₁₂D₁₂²⁻, B₁₂Cl₁₂²⁻, B₁₂Br₁₂²⁻, and B₁₂I₁₂^{2-.3} Since 1999, Hawthorne and coworkers have reported the synthesis and isolation of salts of B₁₂Me₁₂²⁻, B₁₂(OH)₁₂²⁻, and a variety of B₁₂(OR)₁₂²⁻ and B₁₂(OCOR)₁₂²⁻ derivatives.⁴

Our interest⁵ in highly fluorinated weakly coordinating anions such as 1-R-CB₁₁F₁₁⁻ prompted us to reinvestigate the synthesis and physicochemical properties of the dodecafluoro-*closo*-dodecaborate(2–) anion, $B_{12}F_{12}^{2-}$. Although a dianion would not be expected to be as weakly coordinating as a structurally similar monoanion, there are situations where a weakly coordinating dianion might be suitable for a particular chemical task.^{6,7} A species reported^{3a} in 1962 to be $B_{12}F_{12}^{2-}$ was later shown to be the undecafluoromonohydroxy species $B_{12}F_{11}(OH)^{2-}$.^{3b,c} The first successful synthesis of $B_{12}F_{12}^{2-}$ was achieved in 1992, when it was reported that the cesium salt could be prepared in 38% yield by heating $Cs_2B_{12}H_{12}$ in supercritical HF at 550 °C for 5 h.⁸ A preliminary report of the structure of $Cs_2B_{12}F_{12}$ ·H₂O was included in that paper.⁸ The reported B–F distances are 1.37(1)–1.41(1) Å.

In this paper, we report a significantly lower-temperature synthesis of K₂B₁₂F₁₂ in 72% recrystallized yield. In initial experiments, 20% F₂/N₂ was added to a -70 °C suspension of K₂B₁₂H₁₂ in liquid anhydrous HF (LAHF). After the reaction mixture was stirred at 25 °C for 72 h, it was found that the major products were BF_4^- . $B_{12}F_{12}^{2-}$ (21% based on $B_{12}H_{12}^{2-}$), and a number of dimeric B_{24} species. To minimize the formation of BF4⁻ and the dimeric species, which presumably results from the oxidative-coupling of one or more $B_{12}H_{12-x}F_x^{2-}$ species $(x \le 3)^9$ an alternative synthetic approach was used.¹⁰ The compound K₂B₁₂H₁₂ was stirred in LAHF at 70 °C for 14 h, a procedure known to convert $B_{12}H_{12}^{2-}$ to $B_{12}H_8F_4^{2-}$ in high yield.⁸ The reaction mixture was then cooled to 25 °C and treated with 20% F₂/N₂ for 72 h [CAUTION: both HF and F₂ are extremely hazardous materials and should only be handled by trained personnel]. Following workup with water and recrystallization from acetonitrile, K₂B₁₂F₁₂ was isolated in 72% yield. The compositional purity of the $B_{12}F_{12}^{2-}$ anion was determined to be >99.5% from a negative-ion electrospray mass spectrum, which exhibited a grouping of peaks centered at m/z 178.9 (calcd for B₁₂F₁₂²⁻, 178.8), and by ¹¹B and ¹⁹F NMR spectra, which exhibited a single broad resonance at $\delta - 17.0$ ($\delta 0$ for external BF₃·OEt₂) and an unresolved multiplet (fwhh = 170 Hz) at δ -269.6 (δ 0 for external CFCl₃) which narrowed to a single resonance (fwhh = 27 Hz) upon broad-band ^{11}B decoupling, respectively.11

Figure 1. Thermal ellipsoid plot of $[CPh_3]_2[B_{12}F_{12}]$ (50% probability ellipsoids except for hydrogen atoms, which are shown as spheres of arbitrary size). The white, light-gray, and dark-gray ellipsoids are carbon, fluorine, and boron atoms, respectively. Selected distances (Å) and angles (deg): B1-F1, 1.391(4) Å; B2-F2, 1.378(5) Å; B3-F3, 1.382(5) Å; B1-B2, 1.785(6) Å; B1-B3', 1.765(6) Å; B1-B3'', 1.769(6) Å; B2-B3, 1.775(7) Å; B2-B2', 1.761(10) Å; B3-B3', 1.769(6) Å; F1-···C1, 3.087(2) Å; B1-F1-··C1, 139.0(3)°; C2-C1-C2', 120.0(5)°; C2-C1-C8, 120.0(2)°; F1-··C1-C2, 87.0(1)°; F1-··C1-C8, 93.1(1)°.

The salt $K_2B_{12}F_{12}$ was converted to $[CPh_3]_2[B_{12}F_{12}]$, $[N(n-Bu)_4]_2$ - $[B_{12}F_{12}]$, $[NH(n-C_{12}H_{25})_3]_2[B_{12}F_{12}]$, $[NH_4]_2[B_{12}F_{12}]$, and $Li_2B_{12}F_{12}$ by metathesis reactions.¹⁰ The $[NH(n-C_{12}H_{25})_3]_2[B_{12}F_{12}]$ salt is noteworthy because, unlike the other salts, it is soluble in aromatic hydrocarbon solvents. In preliminary work, the reactive salt $[CPh_3]_2$ - $[B_{12}F_{12}]$ has been used to generate compounds containing the reactive cation-like species $SiMe_2(n-C_{18}H_{37})^+$ and $AlMe_2^+$. Given that the putative $AlMe_2^+$ cation abstracts a fluorine atom from $B(C_6F_5)_4^{-,12}$ it is significant that $B_{12}F_{12}^{2-}$ is stable in the presence of $AlMe_2^+$.

Crystals of $[CPh_3]_2[B_{12}F_{12}]$ suitable for X-ray diffraction¹³ were grown from CH₂Cl₂/hexanes. The structure, shown in Figure 1, consists of the icosahedral $B_{12}F_{12}^{2-}$ dianion weakly interacting with the two CPh₃⁺ cations via two symmetry-related BF····C contacts. Only three boron atoms and three fluorine atoms are unique. The B–F distances in the $B_{12}F_{12}^{2-}$ anion are the same to within $\pm 3\sigma$ as the lower-belt and antipodal B–F distances in 1-Et-CB₁₁F₁₁⁻ and 1-CH₂Ph-CB₁₁F₁₁^{-.5a,b} The most important structural feature is the F1···C1 distance of 3.087(2) Å, which is only 0.08 Å shorter than the 3.17 Å sum of van der Waals radii for carbon and fluorine.¹⁴ Furthermore, the F1···C1 distance in [CPh₃]₂[B₁₂F₁₂] is far

[†] Colorado State University. [‡] Russian Academy of Sciences.

Figure 2. Cyclic voltammogram of a 0.064 M ethylene carbonate:dimethyl carbonate (50:50 v:v) solution of Li₂B₁₂F₁₂ ($\Delta E_p = 240$ mV, Pt working and counter electrodes, lithium foil reference electrode, no supporting electrolyte). The quasi-reversible $B_{12}F_{12}^{1-/2-}E_{1/2}$ value is 4.9 V. There was no reduction wave more positive than 0 V. The sharp rise in current at potentials more positive than 5.5 V is due to solvent oxidation.

longer than the related BF···C distances in [CPh₂(p-OMe-C₆H₄)]- $[BF_4]$ and $[CPh(p-OMe-C_6H_4)_2][BF_4]$, 2.68 and 2.58 Å, respectively.15

The BF····C distances demonstrate that $B_{12}F_{12}^{2-}$ is considerably less basic than BF₄⁻ despite the higher negative charge. To further probe the applicability of $B_{12}F_{12}^{2-}$ as a weakly coordinating anion, we examined its thermal, chemical, and electrochemical stability. A thermogravimetric analysis of Li₂B₁₂F₁₂ revealed no mass loss up to 450 °C (heating/cooling at 10 °C/min). The sample was recovered unchanged as judged by ¹⁹F NMR spectroscopy. In contrast, crystalline LiPF6 decomposes at 70 °C.16 None of the salts we examined appeared to be shock sensitive. A thermogravimetricmass spectral analysis of [NH₄]₂[B₁₂F₁₂] revealed no mass loss and no mass spectral evidence for the evolution of NH₃ up to 480 °C (heating/cooling at 20 °C/min). The sample was recovered unchanged as judged by ¹H and ¹⁹F NMR spectroscopy. In contrast, crystalline [NH₄]₂[B₁₂H₁₂] decomposes at 310 °C.¹⁷

The B₁₂H₁₂²⁻ anion is known to react with 38% sulfuric acid.^{4c} In contrast, the lithium salt of $B_{12}F_{12}^{2-}$ was stable in 98% sulfuric acid and in 70% nitric acid for at least 24 h. Even more remarkable is the observation that the $B_{12}F_{12}^{2-}$ anion was unchanged after treatment with aqueous 3 M KOH for 10 days. Note that the related fluoroanion 1-H-CB₁₁F₁₁⁻ is converted to mono- and dihydroxy derivatives in 3 M NaOH after only 24 h^{5c} and C₂H₂B₁₀F₁₀ is rapidly hydrolyzed even in pH 7 water.¹⁸

With regard to redox stability, $B_{12}F_{12}^{2-}$ did not react with 10 equiv of aqueous Ce4+ (hours) or with metallic sodium in THF (1 day). In contrast, 1-H-CB₁₁F₁₁⁻ reacts with sodium in THF to form 1,10-H₂-CB₁₁F₁₀⁻, among other products. In a 50:50 (v:v) mixture of ethylene carbonate and dimethyl carbonate, $B_{12}F_{12}^{2-}$ was not reduced at 0 V versus Li+/0 and underwent a quasi-reversible oxidation at 4.9 V versus Li^{+/0} (ca. 1.9-2.0 V versus NHE), as shown in Figure 2 ($\Delta E_p = 240 \text{ mV}$). Under these conditions, 1-Me-CB₁₁F₁₁⁻ was not oxidized prior to the onset of solvent oxidation (5.5 V versus Li^{+/0}). For comparison, the $B_{12}Me_{12}{}^{1-\!/2-\ 4a,d}$ and $CB_{11}Me_{12}^{0/1-19} E_{1/2}$ values are 0.4 and 1.6 V (versus NHE), respectively.²⁰ The fact that the oxidation of $B_{12}F_{12}^{2-}$ may be reversible suggests that salts of the radical monoanion $B_{12}F_{12}^{-}$ might be isolable. Note that the radicals $B_{12}Me_{12}^{1-4a,d,21}$ and $CB_{11}Me_{12}^{19}$ have been isolated.

Acknowledgment. This research was supported by NSF grant CHE-9905482 and Air Products and Chemicals, Inc.

Supporting Information Available: Synthetic details and selected NMR spectral data for new compounds and tables of X-ray parameters and results for [CPh₃]₂[B₁₂F₁₂] (PDF and CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Pitochelli, A. R.; Hawthorne, M. F. J. Am. Chem. Soc. **1960**, 82, 3228.
 (a) Muetterties, E. L.; Knoth, W. H. Polyhedral Boranes; M. Dekker: New York, 1969. (b) Hawthorne, M. F. Pure Appl. Chem. **1991**, 63, 327.
 (c) Hawthorne, M. F. Angew. Chem., Int. Ed. Engl. **1993**, 32, 950. (d) (2)Hawthorne, M. F. Advances in Boron Chemistry, Special Publication No. 201; Royal Society of Chemistry: London, 1997; pp 261-272. (e) Hawthorne, M. F. Mol. Med. Today 1998, 174-181.
- (3) (a) Knoth, W. H.; Miller, H. C.; England, D. C.; Parshall, G. W.; Muetteries, E. L. J. Am. Chem. Soc. **1962**, 84, 1056. (b) Knoth, W. H.; Miller, H. C.; Sauer, J. C.; Balthis, J. H.; Chia, V. T.; Muetteries, E. L. Inorg. Chem. 1964, 3, 159. (c) Miller, H. C.; Muetterties, E. L. U.S. Patent 3.551.120, 1970.
- (a) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. (a) reynami, r., Knobler, C. D., Hawnon, M. F. Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 1999, 38, 1061. (c) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 2000, 39, 1163. (d) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 2001, 40, 1291. (e) Maderna, A.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 2001, 40, 1291. (e) Maderna, A.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 2001, 46, 1661. (c) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 2001, 46, 1661. (c) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 2001, 46, 1661. (c) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 2001, 46, 1661. (c) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 2001, 46, 1661. (c) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 2001, 46, 1661. (c) Peymann, T.; Knobler, C. B.; Hawthorne, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 2001, 46, 1661. (c) Peymann, T.; Knobler, C. B.; Hawthorne, C. 2001, 40, 1661. (f) Peymann, T.; Knobler, C. B.; Khan, S. I.; Hawthorne, M. F. Angew. Chem., Int. Ed. 2001, 40, 1664. (g) Thomas, J.; Hawthorne, M. F. Chem. Commun. 2001, 1884. (h) Peymann, T.; Knobler, C. B.; Khan, S. I.; Hawthorne, M. F. J. Am. Chem. Soc. 2001, 123, 2182.
- (a) Ivanova, S. M.; Ivanov, S. V.; Miller, S. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. *Inorg. Chem.* **1999**, *38*, 3756. (b) McLemore, D. K.; Dixon, D. A.; Strauss, S. H. *Inorg. Chim. Acta* **1999**, *294*, 193. (c) Ivanov, S. V.; Rockwell, J. J.; Polyakov, O. G.; Gaudinski, C. M.; Anderson, O.
- (6) Strauss, S. H. Chem. Rev. 1993, 93, 927
- (d) Statuss, S. H. Chem. Rev. 1995, 93, 921.
 (7) (a) Metz, M. V.; Schwartz, D. J.; Stern, C. L.; Nickias, P. N.; Marks, T. J. Angew. Chem., Int. Ed. 2000, 39, 1312. (b) Zhou, J.; Lancaster, S. J.; Walker, D. A.; Beck, S.; Thorton-Pett, M.; Bochmann, M. J. Am. Chem. Soc. 2001, 123, 223.
- (8) Solntsev, K. A.; Mebel, A. M.; Votinova, N. A.; Kuznetsov, N. T.; Charkin, O. P. Koord. Khim. **1992**, *18*, 340.
- (9) Wiersema, R. J.; Middaugh, R. L. Inorg. Chem. 1969, 8, 2074.
- (10) Synthetic details are given in the Supporting Information.
 (11) NMR spectral data for various B₁₂H_{12-x}F_x²⁻ anions are reported in: Solntsev, K. A.; Ivanov, S. V.; Sakharov, S. G.; Katser, S. B.; Chern-
- yavskii, A. S.; Votinova, N. A.; Klyuchishche, E. A.; Kuznetsov, N. T. Russ. J. Coord. Chem. 1997, 23, 369.
- (12) Bochmann, M.; Sarsfield, M. J. Organometallics 1998, 17, 5908.
- (13) Crystal data for [CPh₃]₂[B₁₂F₁₂]: red-orange; tetragonal; *I*4₁/*acd*, *a* = 19.102(2), *b* = 19.102(2), *c* = 20.535(3) Å; *Z* = 8; *T* = 173(2) K; *R* = $0.061, R_{\rm w} = 0.125; \text{ GOF} = 0.986.$
- (14) Bondi, A. J. Phys. Chem. 1964, 68, 441.
- (15) (a) Bleasdale, C.; Clegg, W.; Ellwood, S. B.; Golding, B. T. Acta Crystallogr., Sect. C (Cr. Str. Comm.) 1991, 47, 550. (b) Laube, T. Chem. Rev. 1998, 98, 1277
- (16) Ehlert, T. C.; Hsia, M. M. J. Chem. Eng. Data 1972, 17, 18.
 (17) Ivanov, S. V.; Malinina, E. A.; Solntsev, K. A.; Kuznetsov, N. T. Koord.
- Khim. 1992, 18, 394.
- (18) Kongpricha, S.; Schroeder, H. Inorg. Chem. 1969, 8, 2449.
- King, B. T.; Noll, B. C.; McKinley, A. J.; Michl, J. J. Am. Chem. Soc. (19)**1996**, 118, 10902.
- (20) A review of electrochemistry of polyhedral boron compounds is available: Morris, J. H.; Gysling, H. J.; Reed, D. Chem. Rev. 1985, 85, 51.
 (21) Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Chem. Commun. 1999,
- 2039.

JA0296374